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LIGHT TRANSPORT

(1)



TODAYS’ RENDERING IS OLD NEWS

• From Matt Pharr’s editorial to ACM TOG special issue on production rendering [Pharr 2018]: 

(2)

“Today … renderers are … based on … path tracing. 

Introduced … by Jim Kajiya (1986).”

“Many advancements were made … including

- more effective light sampling algorithms (Shirley et al. 1996),

- high-quality sampling patterns (Kollig and Keller 2002), and

- multiple importance sampling (Veach and Guibas 1995),”

“… the core ray tracing [got] more efficient (Wald et al. 2001).” [Kajiya 1986]



ADVANCED LIGHT TRANSPORT

• Why are advanced light transport algorithms 

not used in practice?

(3)

Metropolis Light Transport [Veach and Guibas 1997]



A GOOD LIGHT TRANSPORT ALGORITHM ...

• … has to be

– Fast in common scenes

– Robust & reliable

– Easy-to-use (no parameters)

– Interactive & progressive

– …

(4)



THE GOOD ALGORITHM CHECKLIST

(5)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive



PATH TRACING

• [Kajiya 1986, Veach and Guibas 1995, Shirley 1996,…]

(6)

Reference rendering 

(VCM)

Path tracing

(no clamping)

Path tracing 

(with  clamping)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive



THE LIGHT TRANSPORT CHALLENGE
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Algorithm that can 

renders this at least as 

fast as a path tracer…

… and it can also render this.



BIDIR / VCM

(8)

Vertex Connection and Merging (30 min)Path Tracing (30 min)



BIDIR / VCM

• [Lafortune and Willems 1993, Veach and Guibas 1995]

• [Georgiev et al. 2012, Hachisuka et al. 2012]

• VCM = Photon mapping + Bidir

• “Brute-force robustness” – Overhead

(9)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive



METROPOLIS LIGHT TRANSPORT
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MLT + Manifold exploration [Jakob and Marschner 2012] Reference



METROPOLIS LIGHT TRANSPORT

• [Veach and Guibas 1997, …]

• Uneven convergence, temporal instability

(11)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive



DESIGNING THE ULTIMATE PRACTICAL 
ALGORITHM



THE ULTIMATE LIGHT TRANSPORT ALGORITHM

• Start off from PT

– because it ticks most of the boxes

• Address its problems

• Root of the problem: lack of information in sampling decisions

(13)

• Fast in common scenes

• Robust & reliable

• Easy-to-use (no parameters)

• Interactive & progressive



Path sampling in unidirectional path tracing
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Directional sampling

?
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BSDF

Path Guiding



Path termination (Russian roulette)

?
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Path termination (Russian roulette)
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Russian roulette



Splitting
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SOLUTION IDEA

• Give path tracing extra information

• Chicken-and-egg problem

• Adaptive sampling

• How to make it robust when there’s so much uncertainty? – Machine learning methods

(19)



OVERVIEW

• Path guiding through online mixture model training [Vorba et al. 2014]

– Guided Russian roulette and splitting [Vorba and Křivánek 2016]

– Path guiding in volumes [TOG, conditionally accepted]

• Robust adaptive direct illumination through online Bayesian regression

[Vévoda et al. 2018] 

(20)



PATH GUIDING
Vorba et al. – ACM SIGGRAPH 2014
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Previous work

• Jensen [1995]: reconstruction



k-NN

Previous work

• Jensen [1995]: reconstruction
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Previous work
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Previous work

• Jensen [1995]: reconstruction



Limitations of previous work

• Bad approximation of             in complex scenes



Limitations of previous work

• Bad approximation of             in complex scenes



Limitations of previous work



Limitations of previous work



Limitations of previous work
PT



Limitations of previous work

Not enough memory!



Our solution

• The Gaussian mixture model (GMM)

GMM
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Our solution

• The Gaussian mixture model (GMM)

GMM
on-line

learning

constant

memory⇒ ⇒



Overcoming the memory constraint



Overcoming the memory constraint

1st pass
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Overcoming the memory constraint

1st pass

k-NN



Overcoming the memory constraint

1st pass

GMM
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Overcoming the memory constraint
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Overcoming the memory constraint

1st pass 2nd pass

GMM



Overcoming the memory constraint

1st pass

GMM

2nd pass



Overcoming the memory constraint

1st pass 2nd pass 3rd pass …

GMM



Overcoming the memory constraint

1st pass 2nd pass 3rd pass …

GMM



GM: superior estimate
Jensen 

(histogram)

Gaussian mixtures

(parametric model)



On-line stepwise 

Expectation-Maximization 
[Cappé & Moulines 2009] 

Input:   an infinite stream of particles

…



Method outline

renderingtraining



Guided path sampling



Guided path sampling



Guided path sampling



Guided path sampling



Guided path sampling



Guided path sampling



GUIDED PATH TERMINATION (RUSSIAN ROULETTE)
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Russian roulette



GUIDED SPLITTING
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Path tracing     (1h)
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Guided path tracing   (1h)



Path tracing     (1h)
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Guided path tracing   (1h)



Path tracing     (1h)
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Guided path tracing   (1h)



Reference

69



Path tracing

Plain 
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Path tracing

Plain + guided RRS 
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Path tracing

Plain + our ADRRS Path guiding
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Path tracing

Plain + our ADRRS + guided RRS Path guiding
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Complex Bidirectional Methods (VCM)
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Vertex Connection and MergingPath Tracing



Guided path tracing can match complex methods
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Path Tracing



• Providing path tracer with information makes it much more robust
• Machine learning is the key (online step-wise EM formulation)

• Step towards a simpler ultimate algorithm

• Path guiding applicable in production

Practical Implication

76



GUIDED VOLUMETRIC TRANSPORT



Volume path guiding

MC METHODS FOR VOLUMETRIC LIGHT TRANSPORT – ZERO VARIANCE-BASED SAMPLING SCHEKEMS (A.K.A. PATH GUIDING)

• All events importance sampled

• Product sampling for collision distance



Reference



Standard sampling

30 min



New volume path guiding

30 min



Dist. + dir. guidingStandard sampling RR + splitting

SPP:  1580
relMSE: 6.458

SPP:  1288 
relMSE:  1.354

SPP:  1660
relMSE:  0.401

MC METHODS FOR VOLUMETRIC LIGHT TRANSPORT – ZERO VARIANCE-BASED SAMPLING SCHEKEMS (A.K.A. PATH GUIDING)



Reference



Standard sampling

45 min



New volumetric path guiding

45 min



Dist. + dir. guidingStandard sampling RR + splitting

SPP:  796
relMSE: 1.725

SPP:  392 
relMSE: 0.747

SPP:  1068
relMSE: 0.123

MC METHODS FOR VOLUMETRIC LIGHT TRANSPORT – ZERO VARIANCE-BASED SAMPLING SCHEKEMS (A.K.A. PATH GUIDING)



Bayesian online regression for adaptive 
direct illumination sampling

Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek

Render Legion, a.s.
Charles University, Prague
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Direct + indirect illumination
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Direct + indirect illumination
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Direct illumination only

Non-adaptive sampling
[Wang et al. 2009]
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Adaptive sampling
[Donikian et al. 2006]

Non-adaptive sampling
[Wang et al. 2009]



93Ours Adaptive sampling
[Donikian et al. 2006]

Non-adaptive sampling
[Wang et al. 2009]

Direct illumination only

(Bayesian learning)
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95Adaptive sampling
[Donikian et al. 2006]

Non-adaptive sampling
[Wang et al. 2009]

Direct illumination only

510x faster

Robust

Ours
(Bayesian learning)



Previous work
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Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling



Adaptive sampling

• General Monte Carlo
– Vegas algorithm 

• [Lepage 1980]
– Population MC

• [Cappé et al. 2004, ...]

• Rendering
– Image sampling

• [Mitchell 1987, ...]
– Indirect illumination  (path guiding)

• [Dutre and Willems 1995, Jensen 1995,  Lafortune et al. 1995, ...]
• [Vorba et al. 2014, Muller et al. 2017]

– Direct illumination
• [Shirley et al. 1996, Donikian et al. 2006, Wang et al. 2009]

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Bayesian methods in rendering

• Filtering
– NonLocal Bayes [Boughida and Boubekeur 2017]

• Global illumination
– Bayesian Monte Carlo [Brouilat et al. 2009, Marques et al. 2013]
– Path guiding [Vorba et al. 2014]

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
98



Background
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Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling



Direct illumination

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Less important

Occluded



Clustering (Lightcuts)

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

101

[Paquette et al. 1998, 

Walter et al. 2006]

Cluster contribution bounds



Cluster sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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[Wang and Akerlung 2009]

P



Adaptive light sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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[Donikian et al. 2006]

screen space

P P

Ad-hoc combination

+



Problem summary

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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MC estimate

Cluster contribution bounds



Our approach
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Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling



Contributions

• Optimal sampling of clusters

• Adaptive sampling by Bayesian inference

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Optimal cluster sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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P

𝑃 𝐶 ∝ mean2 + variance
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Direct illumination only



Mean only (Previous)
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Direct illumination only

Mean + Variance (Ours)



Contributions

• Optimal sampling of clusters

• Adaptive sampling by Bayesian inference

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Naive adaptive cluster sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Bayes cluster adaptive sampling

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Cluster-region pairs

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Cluster-Region data

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Regresion Data model

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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𝑁(est. |
𝑘

𝑑2
,
ℎ

𝑑4
)

𝑝0 × 𝛿 est.

Parameters:
𝑘, ℎ - normal distr. parameters
𝑝0 - probability of occlusion

Cluster-Region data

𝑑
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Conjugate prior

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫 ∝ likelihood × 𝐩𝐫𝐢𝐨𝐫

Same functional form



Our (conjugate) Priors

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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p0 ~ Beta 𝑝0 …

k, h ~ Normal inverse gamma 𝑘, ℎ 𝜇0, … )

Hyperparameters

Cluster contrib. estimate



Algorithm summary

• Light preprocess (clustering)

• During each Next event estimation:
– Obtain clustering (Cut) cached in a region

– Compute distributions of estimates for each cluster in Cut 
-> mean, variance

– Build distribution over clusters

– Sample direct illumination

– Record new data for sampled cluster

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Results
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Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling
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Direct illumination only



121Wang Ours Donikian

510x faster Robust

Direct illumination only

R
M

SE

time [min]

Wang



Direct + indirect illumination
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Direct + indirect illumination

Wang

Ours

6.7x faster 6.7x faster

Wang

Ours
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Direct illumination only
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Direct illumination only

Ours DonikianWang

9.3x faster
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R
M

SE

time [min]

Wang



Ours DonikianWang

Direct illumination only

Robust
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127

Direct + indirect illumination



128

Direct + indirect illumination

Ours Wang OursWang

4.3x faster 4.3x faster
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Direct + indirect illumination

OursWang



130

Direct illumination only



131
Wang Ours (64) No regression

Direct illumination only

3.6x faster

1 − 𝑝0 × 𝑁 est.
𝑘
𝑑2

,
ℎ
𝑑4

𝑝0 × 𝛿 est.



Contribution

• Bayesian framework for robust adaptivity

• Optimal cluster sampling

• Algorithm for direct illumination

– Unbiased, adaptive, robust

– Easy to integrate into a path tracer

Vévoda, Kondapaneni, Křivánek - Bayesian online regression for adaptive illumination sampling

132



CONCLUSION



CONCLUSION

• Path guiding

– Makes complex bidirectional method unnecessary

– Potential for wide adoption practice 

• Machine learning methods = principled way to achieve robust, online adaptive sampling

– Path guiding – online learning of parametric mixture models

– Direct illumination sampling – Bayesian online regression

• Online learning methods compatible interactive rendering workflows & progressivity

• Bayesian methodology can provide the necessary robustness



FUTURE WORK

• Bayesian model selection 

• Full Bayesian inference – Variational Bayes?

• Adaptive decision based on reinforcement learning

• Deep learning for light field reconstruction for path guiding

• Can this be that one missing piece to make MCMC methods useful in practice?



THANK YOU!
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• While you may think that rendering is 

science, remember that first and foremost, 

rendering is magic.

(13

6)


